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The suggestion is made that creep in solids can occur by time-dependent changes in elastic 
properties. Specific mechanisms include cavity formation and growth, crack nucleation 
and growth, grain boundary migration in polycrystalline solids with elastically anisotropic 
grains and the redistribution of the individual phases within a composite. Creep rates by 
these four mechanisms are analysed and discussed for simple mechanical models. Recom- 
mendations are made for the interpretation of creep data in order to clearly separate the 
contribution of elastic creep from the total creep deformation. 

1. Introduction 
Mechanically stressed solids can exhibit time- 
dependent deformation, referred to as creep. 
This can occur by a number of well accepted 
mechanisms such as dislocation glide [1 ] and climb 
[2], Nabarro-Herring [3, 4] and Coble creep [5] 
and diffusion accommodated grain-boundary 
sliding [6]. 

The purpose of this communication is to suggest 
the existence of an additional mechanism of creep 
which may make a minor, or even major, relative 
contribution to the total observed creep defor- 
mation. This mechanism is based on microstruc- 
tural changes during creep deformation which 
cause time-dependent decreases in the elastic 
properties. Under stress, such changes in elastic 
behaviour will lead to time-dependent changes in 
the elastic strain, superposed on any other creep 
strain due to other creep processes. These writers 
have chosen to refer to such creep due to changes 
in elastic properties as "elastic" or "compliance" 
creep. 

Elastic creep can occur by a number of different 
mechanisms. The formation of cavities in many 
materials undergoing creep is a well-known 
phenomenon [7-10].  It is also well known that 
cavities will reduce the elastic moduli of solids 
[11, 12]. For this reason, cavity formation and 
growth should lead to elastic creep. 
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The existence of crack growth under stress is 
well recognized. Cracks have a profound effect on 
elastic properties [13-15]. Therefore, crack for- 
mation and growth should also lead to elastic 
creep. Although not defined as elastic creep, the 
non-linear deformation of a heavily microcracked 
ceramic [16, 17] at room temperature was 
attributed [18] to crack growth by stress corrosion. 
Also, elastic creep is implicit in the formulations 
of Evans and Rana [19] and Evans [20] for the 
creep due to the nucleation and growth, respect- 
ively, of crack-like cavities. The order of magni- 
tude difference in creep rates in tension and 
compression observed for reaction-sintered and 
hot-pressed silicon nitride was thought to be 
because, in tension, grain-boundary crack for- 
mation was the rate-controlling process [21, 22]. 
Possibly, in these latter studies, part of the 
observed creep represents elastic creep by the 
nucleation and growth of such cracks. 

The elastic properties of polycrystaUine 
materials with elastically anisotropic grains depend 
on the degree of preferred orientation of the grains 
[23-25]. Migration of grain boundaries is a well- 
known phenomenon. For these reasons, grain- 
boundary migration under load, in such a manner 
that a greater proportion of the grains are aligned 
with their direction of lower Young's modulus as 
much as possible parallel to the applied stress, 
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represents a further possible mechanism of elastic 
creep. 

Finally, the elastic properties of composites 
depend strongly on the nature of the distribution 
of the individual components within the composite 
[26]. For this reason any mechanism which alters 
this phase distribution under stress should lead to 
elastic creep as well. 

It is the purpose of this communication to 
present brief analyses for elastic creep by the 
four mechanisms above, based on appropriate 
mechanical models for which literature equations 
for the elastic properties are available. 

2. Analysis 
2.1. Elastic creep by cavity formation 

and growth 
A solid will be considered with a fractional volume 
P of N spherical cavities per unit volume of solid. 
All cavities have equal volume V, with N V  = P. 
The cavity size is assumed to be very small com- 
pared to the size of the unit cube. 

Solutions for the shear and bulk moduli of 
elasticity of sofids with spherical cavities were 
obtained by Hashin [12] from which an expression 
for Young's modulus is readily derived. The com- 
plete expression is relatively cumbersome. For 
simplicity, for values of Poisson's ratio, v of the 
order of 0.2 and 0.3, and a dilute concentration 
of cavities, to a very good approximation, Young's 
modulus (E) can be written [11, 12] 

E --~ Eo(1 -- 2P), (1) 

where Eo is Young's modulus of the solid without 
cavities. 

For a uniaxial stress (o), the elastic strain (e) is 

e ~-- olEo(1 -- 2P), (2a) 

which for 2P ~ 1, yields 

e ~ o(1 + 2P)/Eo. (2b) 

Differentiating with respect to time results in 
the rate of change of strain (i.e. rate of elastic 
creep) 

"~ 2o/61Eo (3) 

writing o[Eo= eo, the elastic strain without 
cavities, yields 

4leo = 216 (4) 

which indicates that the relative rate of change of 
the elastic strain is twice the rate of change of the 
fractional volume of cavities. 

Since P = NV ,  Equation 3 can be written 

"" 2(o/Eo)(N(/" + V)V) (5) 

which simultaneously reflects the effect of the 
growth of existing cavities and the nucleation of 
cavities on the elastic creep rate. For a distri- 
bution of cavity sizes and a size dependent growth 
rate, Equation 5 can be written in integral form. 

The stress exponent of the elastic creep rate 
due to cavity formation and growth can be esti- 
mated from the study of Miller and Langdon [27], 
who analysed fiterature data for the density 
changes during creep for a number of metals. 
From these results it can be shown that the rate of 
change of fractional volume of growing and 
nucleating cavities (/6) can be written (in the 
present notation) 

P = B(e~/d)(o/G) q exp (-- agb/RT),  (6) 

where e t is the total creep strain, d is the grain size, 
G is the shear modulus, Qgb is the activation 
energy for grain-boundary diffusion, R is the gas 
constant, T is the absolute temperature and B and q 
are constants with q = 2 to 3. 

Substitution of Equation 6 into Equation 4 
results in 

= Ko r, (7) 

where for a given temperature, K is a constant 
obtainable from Equations 4, 5 and 6 and 
r = q + 1, or 3 < r < 4. This indicates the non- 
linear nature of elastic creep by cavity formation 
and growth. 

2.2. Elastic creep by crack growth 
A uniaxially stressed solid contains N penny- 
shaped cracks per unit volume. All cracks have 
equal radius of revolution, r and are oriented 
perpendicular to the applied stress. For such a 
solid with cracks, the effective Young's modulus 
is [28] 

Eeee = Eo(1 + 16(1 --v2)Nr3/3) -1, (8) 

where v is Poisson's ratio. 
For a uniaxial stress (o) the elastic strain (e) is 

e = o[1 + 16(1 --v2)Nr3/3]/Eo. (9) 

Differentiation with respect to time yields the 
rate of elastic creep 

= 16(1 -- v2)or2(3N~ + rN)/3Eo,  (10) 

where ~ is the rate of crack growth and 3~ is the 
rate of crack nucleation. For a distribution in 
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crack sizes Equation 9 can be written in integral 
form. 

In order to establish the stress exponent for 
elastic creep by crack growth, extensive literature 
data have shown that the rate of crack growth at 
a given temperature can be described by 

i" = A K f ,  (11) 

where A and n are constants for a given material. 
The values o fn  range from near 10 for hot-pressed 
silicon nitride [29], and near 18 for soda- l ime-  
silica glass [30] at room temperature in most 
environments to as high as 200 for graphite [31] in 
room air. In Equation 11, K I is the mode I stress 
intensity factor given by 

K I = Y o r  t/2, (12) 

where Y is a constant for a given crack and 
specimen geometry. 

Substitution of Equation 12 into Equation 11 
yields for constant crack density, N()V = 0) 

e = [16(1--v2)NYnA/Eolon+'r"/Z+Z (13) 

which indicates that elastic creep by crack growth 
is highly non-linear. Since the material will frac- 
ture at K = Kie, the critical stress intensity factor, 
elastic creep by crack growth is expected to occur 
primarily at stress levels immediately below the 
fracture stress. This latter conclusion agrees with 
the findings of Hasselman e t  al. [32], who 
compiled modified creep deformation maps [33] 
for polycrystalline aluminas, which included creep 
by crack growth as a creep mechanism. 

2.3. Elastic creep by grain-boundary 
migration 

A polycrystalline solid is considered with an 
idealized microstructure consisting of thin parallel " 
single-crystal slabs. Mternate slabs have values of 
Young's modulus Ea and E~ corresponding to the 
maximum and minimum values of Young's 
modulus of the single crystal of the material, 
respectively. The model contains N grain bound- 
aries per unit volume. 

2.3. 1. Grain boundary migration 
perpendicular to the stress 

In this case, the plane of the grain boundaries is 
oriented parallel to the stress. The effective 
Young's modulus for this configuration corre- 
sponds to Paul's [34] upper bound (E+)on the 
elastic moduli of a two-component composite. 

Assuming equality of Poisson's ratio for the 
different slabs, Young's modulus is 

E. = V~E1 + (1 -- V1)E2, (14) 

where I11 is the volume fraction of slabs with 
Young's modulus, El. 

For a uniaxial stress, the elastic strain is 

e = o[V1EI-I-(1 -- ~)Ez] -1. (15) 

Differentiating with respect to time yields the 
elastic creep rate 

e = - -  o (E ,  --E2)VI[ VIE 1 + (1 -- V,)E2] -2. 

(16) 

The direction of grain-boundary migration will 
be such as to decrease the fraction of material with 
the higher Young's modulus, El, i.e. equivalent to 
decreasing, VI. For the migration of N grain 
boundaries at a rate, d 

(I1 = - -  N d  (17) 

which upon substitution in Equation 16 with the 
aid of Equation 14, yields 

d = o N d ( E 1 - - E z ) / E 2 + .  (18) 

Equation 18 suggests that the elastic creep rate 
by boundary migration perpendicular to the direc- 
tion of stress is directly proportional to the degree 
of elastic anisotropy (El--E2), the number and 
rate of migrating boundaries. 

The present writers are not aware of literature 
solutions for stress-activated grain-boundary 
migration. Nevertheless, since such migration is 
expected to occur by a diffusional process, the 
rate of migration is expected to exhibit a stress 
exponent at least equal to unity or higher. For 
this reason, the elastic creep rate given by 
Equation 18 is expected to be proportional to the 
quadratic or higher power of stress. 

2.3.2. Grain-boundary migration parallel 
to the stress 

The mechanical model considered for this case is 
identical to the one considered in Section 2.3.1, 
with the exception that the stress direction is 
perpendicular to the plane of the slabs. Assuming 
identical Poisson's ratio for all slabs, Young's 
modulus for this configuration and stress direction 
corresponds to the lower bound [34], E_ on 
Young's modulus of a two-component composite 

E S  1 = V~[Ea + (1 -- V~)]Ez. (19) 
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For a uniaxial stress (o) the elastic strain is 

e = o[V1/E1 + (1 -- V~)/E2]. (20) 

Differentiation with respect to time yields for 
the creep rate 

= - cr~(1/E2-- alE,). (21) 

The direction of grain-boundary migration is 
such as to cause a decrease in V~. For N boundaries 
migrating at a rate, d 

= --Ud (22) 

which upon substitution into Equation 21 yields 

= aNd(E, - -E2) /E,  E2. (23) 

In analogy to the discussion in Section 2.3.1 
elastic creep by grain-boundary migration parallel 
to the stress is expected to be proportional to the 
stress raised to the power two or higher. 

Comparison of Equations 18 and 23 shows that 
elastic creep by grain-boundary migration parallel 
and perpendicular to the applied stress is governed 
by the same variables, with the exception that the 
creep rate by boundary migration perpendicular 
to the stress is an inverse function of the instan- 
taneous value of the Young's modulus of the 
structure (i.e. the value of V~). In contrast, for 
elastic creep by boundary migration parallel to 
the stress, the creep rate is independent of V1. 

2.4. Elastic creep by the redistribution of 
components within a composite 

For the analysis of this mechanism of elastic creep, 
the composite geometry consists of a fiat plate 
containing a dilute volume fraction (112) of ellip- 
tical inclusions with identical orientation. The 
composite is subjected to a pure shear stress, r, on 
a plane within the plate at an angle of 45 ~ to the 
major axis. 

For this direction of stress the shear modulus 
(G) can be written 

G = Go(1 + aV2). (24) 

For conditions of plane strain the constant a in 
Equation 24 is [35] 

4(K -- 1)(1 -- u) 

(1 - -  K ) ( R  - -  I)2/(R + 1 ) 2 - -  (K(3  - -  4v)  + 1 ) '  

(25) 
where K = E2/Ea the ratio of the Young's moduli 
of inclusion and matrix and R is the ratio of the 
major-to-minor axis of the elliptical inclusions. 
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For a shear stress r, the shear strain 

7 = r/Go(1 + aV2). (26) 

For constant V2, the elastic creep rate 

= -- (r/Go)V~(1 + aV2) -2 d, (27) 
writing 

d = (3a/3R)R (28) 

a differentiation of Equation 25 with respect to R, 
yields 

- 16k(1 --K)Z(1 --v)(R 2 - 1 ) / ( R  + 1) 4 
d =  

[(1 - -K) (R  -- 1)2/(R + 1)2-- (K(3 - -4v)+ 1)] 2 

(29) 

which upon substitution into Equation 27 results 
in the required creep rate. 

For R > 1 and 0 < K < % a positive creep rate 
results for/~ > O. This implies that elastic creep 
can occur by an increase in the aspect ratio i.e. an 
increase o f  the major axis and corresponding 
decrease in the minor axis. For a circular inclusion 
with R = I, an unstable equilibrium results as 
inclusion deformation can occur by increasing 
both the major and minor axis. 

3. Discussion 
The relative contribution to the total creep defor- 
mation by each of the four mechanisms of elastic 
creep analysed above is expected to differ signifi- 
cantly. The compilation of literature data of 
Miller and Langdon [27] suggests that for many 
metals the total cavity volume fraction rarely 
exceeds 1%. At least for these cases the elastic 
creep rate is expected to be a small fraction of 
the total observed creep rate. However, if cavity 
growth and the corresponding elastic creep rate is 
a substantial fraction of the total non-linear defor- 
mation, care must be taken in the analysis of the 
data. Any elastic strain must be subtracted from 
the total observed strain. For instance, this will 
effect the value of the strain (e) factor in the 
Equation 6 of Miller and Langdon [27] as well as 
the appropriate exponent. 

Elastic creep by crack growth in brittle 
materials may welt be the only mechanism of 
creep deformation at low or moderate temperature 
levels. At least for aluminum oxide, this was 
demonstrated by Hasselman etal. [32] who from 
crack growth data inferred the existence of creep 
by crack growth at temperature ranges over which 
diffusional creep mechanisms (i.e. Nabarro- 
Herring, Coble) were negligible. It was shown that 



this effect is more likely to occur in coarse-grained 
than in fine-grained alumina, resulting in a grain- 
size effect opposite to that for Nabarro-Herring 
and Coble creep. Possibly, the observations of 
Birch e t  aL [22] on the role of cracks in the creep 
of silicon nitrides may be interpreted in terms of 
elastic creep. Certainly, for temperature ranges 
over which stress corrosion effects occur (i.e. near 
room temperature) creep by crack growth is the 
only mechanism of creep. Since the stress range 
over which elastic creep by crack growth occurs is 
expected to be an inverse function of the function 
of the exponent n in Equation 11, creep by this 
mechanism is more likely to be observed for 
materials with low rather than high values of n. 

The existence of elastic creep by crack growth 
is critical in the interpretation of experimental 
data for non-linear deformation not only in creep 
but also in single-cycle loading conditions. As an 
example, the excessively cracked microstructure of 
aluminum oxide published by Kingery et  al. [36] 
may be considered. From the crack density and 
size it can roughly be estimated that during the 
deformation Young's modulus was reduced to at 
least one half to one third of the value of the 
crack-free aluminum oxide prior to deformation. 
For this reason, during deformation under a given 
stress, as the result of the formation of cracks, 
the aluminium oxide underwent an elastic strain 
some two to three times the elastic strain of the 
original non-cracked material. In general, it is 
critical to note then, that any observed non- 
linearity of a brittle material, at least in part could 
be the result of a change in elastic behaviour 
during deformation. In order to obtain a correct 
measure of the strain due to the non-linear (plastic 
or diffusional flow) an elastic strain must be 
subtracted from the total observed strain. The 
interpretation of creep data could become particu- 
larly complex if elastic creep by crack growth 
were coupled with crack-accelerated creep by 
another mechanism analysed by Weertman [37]. 

Regardless of the details considered, the total 
strain of elastic creep by crack growth is expected 
to be of the order of a small multiple (2 to 3) of 
the initial elastic strain to which the material is 
subjected during initial loading. 

Elastic creep by grain-boundary migration is 
expected to be a transient phenomenon and con- 
tribute primarily to the initial stages of creep 
deformation. In the mechanical model considered 
for the analysis of this creep behaviour the trans- 

ient nature arises because the unfavourably 
oriented grain will be consumed by the favourably 
oriented grains. Once this process is completed, 
no further grain-boundary migration and corre- 
sponding elastic creep deformation will occur. In 
actual polycrystalline materials, the grain bound- 
aries exist in the form of a three dimensional net- 
work with the boundaries between two adjacent 
grains pinned at triple points. This pinning permits 
elastic creep by grain-boundary bowing, until the 
driving force for such bowing is balanced by the 
driving force which tends to decrease the grain 
boundary area. These authors are not aware of 
literature data for creep of polycrystalline 
materials which unequivocally can be interpreted 
in terms of elastic creep due to elastic anisotropy. 
Nevertheless, transient creep may possibly be 
attributed to this phenomenon. It is conceivable 
that such grain-boundary migration can be 
observed by measurement of internal friction at 
low frequency. Possibly, the observations of K~ 
[38] for the effect of grain boundaries on internal 
friction in part could be due to grain-boundary 
migration due to the elastic anosotropy. 

The total creep strain which may result from 
grain-boundary migration in elastically anisotropic 
materials subjected to a given stress is expected to 
be of the order of elastic strain non-uniformities 
which result from the elastic anisotropy. 

Elastic creep in composites by a redistribution 
of the individual phases requires simultaneous 
creep deformation of all phases. This will require 
mechanisms of creep in all phases which exhibit 
similar kinetics. This may occur in mixtures of 
polymers and metals with near identical melting 
points, crystal structures and other properties 
relevant to creep processes. For this reason, elastic 
creep by phase redistribution is unlikely to occur 
in the majority of composites such as fibre 
reinforced polymers or other materials in which 
the creep behaviour of the individual components 
exhibit marked differences. For such composites, 
deformation in one component may promote 
interface cracking such as observed by Birch and 
Wilshire [39] for Si3N4-SiC composites. In 
tension, this may possibly lead to elastic creep 
by crack growth. Because of the anticipated non- 
uniform stress distribution in such composites, an 
analysis of elastic creep by crack growth will 
probably have to rely on numerical (finite 
element) methods. 

The total maximum elastic creep strain due to 
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the redistribution of phases within a composite 
will be equal to the difference in elastic strain at 

initial loading and the elastic strain on complete 

elongation of the dispersed phases. For composites 

with large differences in the elastic properties of 
the components,  the total elastic creep strain can 

be a large multiple of the initial elastic strain. 
In a possibly subjective assessment of the 

relative importance of the four mechanisms of 

elastic creep considered in this study, elastic 

creep by crack and cavity growth and formation 
are more likely to be observed than elastic creep 

by grain-boundary migration or the redistribution 

of phases within composite materials. 
A final remark is in order with regard to the 

measurement of creep deformation in which 

elastic creep by any mechanism is expected to be 

significant. For purposes of data analysis it is 

imperative that the relative contribution of the 
elastic creep to the total creep deformation is 

ascertained. As a minimum, this requires the 

measurement of the elastic recovery on removal 

of the load at the end of the creep experiment 
to be compared with the initial elastic strain. 
However, since the relative contribution of the 
elastic creep strain to the total creep strain is not  
expected to be linear with time or other creep 

displacement during the creep experiment, when- 

ever, practical, any changes in elastic properties 

should be monitored continuously during the 
creep deformation. If the temperature level of the 

creep experiment permits, this could be performed 
most conveniently by ultrasonic or other acoustic 

techniques. 
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